Using linked data for mining drug-drug interactions in electronic health records. Academic Article uri icon

Overview

abstract

  • By nature, healthcare data is highly complex and voluminous. While on one hand, it provides unprecedented opportunities to identify hidden and unknown relationships between patients and treatment outcomes, or drugs and allergic reactions for given individuals, representing and querying large network datasets poses significant technical challenges. In this research, we study the use of Semantic Web and Linked Data technologies for identifying drug-drug interaction (DDI) information from publicly available resources, and determining if such interactions were observed using real patient data. Specifically, we apply Linked Data principles and technologies for representing patient data from electronic health records (EHRs) at Mayo Clinic as Resource Description Framework (RDF), and identify potential drug-drug interactions (PDDIs) for widely prescribed cardiovascular and gastroenterology drugs. Our results from the proof-of-concept study demonstrate the potential of applying such a methodology to study patient health outcomes as well as enabling genome-guided drug therapies and treatment interventions.

publication date

  • January 1, 2013

Research

keywords

  • Adverse Drug Reaction Reporting Systems
  • Data Mining
  • Drug-Related Side Effects and Adverse Reactions
  • Electronic Health Records
  • Internet
  • Medical Record Linkage
  • Natural Language Processing

Identity

PubMed Central ID

  • PMC3909652

Scopus Document Identifier

  • 84894333282

PubMed ID

  • 23920643

Additional Document Info

volume

  • 192