Identification of spermatogenesis in a rat sertoli-cell only model using Raman spectroscopy: a feasibility study.
Academic Article
Overview
abstract
PURPOSE: We determined whether Raman spectroscopy could identify spermatogenesis in a Sertoli-cell only rat model. MATERIALS AND METHODS: A partial Sertoli-cell only model was created using a testicular hypothermia-ischemia technique. Bilateral testis biopsy was performed in 4 rats. Raman spectra were acquired with a probe in 1 mm3 samples of testicular tissue. India ink was used to mark the site of spectral acquisition. Comparative histopathology was applied to verify whether Raman spectra were obtained from Sertoli-cell only tubules or seminiferous tubules with spermatogenesis. Principal component analysis and logistic regression were used to develop a mathematical model to evaluate the predictive accuracy of identifying tubules with spermatogenesis vs Sertoli-cell only tubules. RESULTS: Raman peak intensity changes were noted at 1,000 and 1,690 cm(-1) for tubules with spermatogenesis and Sertoli-cell only tubules, respectively. When principal components were used to predict whether seminferous tubules were Sertoli-cell only tubules or showed spermatogenesis, sensitivity and specificity were 96% and 100%, respectively. The ROC AUC to predict tubules with spermatogenesis with Raman spectroscopy was 0.98. CONCLUSIONS: Raman spectroscopy is capable of identifying seminiferous tubules with spermatogenesis in a Sertoli-cell only ex vivo rat model. Future ex vivo studies of human testicular tissue are necessary to confirm whether these findings can be translated to the clinical setting.