Detecting and correcting systematic variation in large-scale RNA sequencing data. Academic Article uri icon

Overview

abstract

  • High-throughput RNA sequencing (RNA-seq) enables comprehensive scans of entire transcriptomes, but best practices for analyzing RNA-seq data have not been fully defined, particularly for data collected with multiple sequencing platforms or at multiple sites. Here we used standardized RNA samples with built-in controls to examine sources of error in large-scale RNA-seq studies and their impact on the detection of differentially expressed genes (DEGs). Analysis of variations in guanine-cytosine content, gene coverage, sequencing error rate and insert size allowed identification of decreased reproducibility across sites. Moreover, commonly used methods for normalization (cqn, EDASeq, RUV2, sva, PEER) varied in their ability to remove these systematic biases, depending on sample complexity and initial data quality. Normalization methods that combine data from genes across sites are strongly recommended to identify and remove site-specific effects and can substantially improve RNA-seq studies.

publication date

  • August 24, 2014

Research

keywords

  • Sequence Analysis, RNA

Identity

PubMed Central ID

  • PMC4160374

Scopus Document Identifier

  • 84909587930

Digital Object Identifier (DOI)

  • 10.1038/nbt.3000

PubMed ID

  • 25150837

Additional Document Info

volume

  • 32

issue

  • 9