Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Academic Article uri icon

Overview

abstract

  • Sirtuins are NAD-dependent deacylases. Previous studies have established two important enzymatic intermediates in sirtuin-catalyzed deacylation, an alkylamidate intermediate I, which is then converted to a bicyclic intermediate II. However, how intermediate II is converted to products is unknown. Based on potent SIRT2-specific inhibitors we developed, here we report crystal structures of SIRT2 in complexes with a thiomyristoyl lysine peptide-based inhibitor and carba-NAD or NAD. Interestingly, by soaking crystals with NAD, we capture a distinct covalent catalytic intermediate (III) that is different from the previously established intermediates I and II. In this intermediate, the covalent bond between the S and the myristoyl carbonyl carbon is broken, and we believe this intermediate III to be the decomposition product of II en route to form the end products. MALDI-TOF data further support the intermediate III formation. This is the first time such an intermediate has been captured by X-ray crystallography and provides more mechanistic insights into sirtuin-catalyzed reactions.

publication date

  • March 9, 2017

Research

keywords

  • Fatty Acids, Monounsaturated
  • Sirtuin 2

Identity

PubMed Central ID

  • PMC5365152

Scopus Document Identifier

  • 85014645514

Digital Object Identifier (DOI)

  • 10.1016/j.chembiol.2017.02.007

PubMed ID

  • 28286128

Additional Document Info

volume

  • 24

issue

  • 3