The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal. Academic Article uri icon

Overview

abstract

  • The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.

publication date

  • February 1, 1986

Research

keywords

  • Mitochondria
  • Proton-Translocating ATPases

Identity

PubMed Central ID

  • PMC2114072

Scopus Document Identifier

  • 0022590783

Digital Object Identifier (DOI)

  • 10.1083/jcb.102.2.523

PubMed ID

  • 2868014

Additional Document Info

volume

  • 102

issue

  • 2