SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Academic Article uri icon

Overview

abstract

  • The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the β-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.

authors

  • Marx, Dagan
  • Plummer, Ashlee M
  • Faustino, Anneliese M
  • Devlin, Taylor
  • Roskopf, Michaela A
  • Leblanc, Mathis J
  • Lessen, Henry J
  • Amann, Barbara T
  • Fleming, Patrick J
  • Krueger, Susan
  • Fried, Stephen D
  • Fleming, Karen G

publication date

  • October 22, 2020

Research

keywords

  • Carrier Proteins
  • Escherichia coli Proteins
  • Molecular Chaperones
  • Peptidylprolyl Isomerase

Identity

PubMed Central ID

  • PMC7668074

Scopus Document Identifier

  • 85096079930

Digital Object Identifier (DOI)

  • 10.1002/pro.3924

PubMed ID

  • 33093201

Additional Document Info

volume

  • 117

issue

  • 45