Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues. Academic Article uri icon

Overview

abstract

  • SIGNIFICANCE: Melanoma is a deadly cancer that physicians struggle to diagnose early because they lack the knowledge to differentiate benign from malignant lesions. Deep machine learning approaches to image analysis offer promise but lack the transparency to be widely adopted as stand-alone diagnostics. AIM: We aimed to create a transparent machine learning technology (i.e., not deep learning) to discriminate melanomas from nevi in dermoscopy images and an interface for sensory cue integration. APPROACH: Imaging biomarker cues (IBCs) fed ensemble machine learning classifier (Eclass) training while raw images fed deep learning classifier training. We compared the areas under the diagnostic receiver operator curves. RESULTS: Our interpretable machine learning algorithm outperformed the leading deep-learning approach 75% of the time. The user interface displayed only the diagnostic imaging biomarkers as IBCs. CONCLUSIONS: From a translational perspective, Eclass is better than convolutional machine learning diagnosis in that physicians can embrace it faster than black box outputs. Imaging biomarkers cues may be used during sensory cue integration in clinical screening. Our method may be applied to other image-based diagnostic analyses, including pathology and radiology.

publication date

  • November 1, 2020

Research

keywords

  • Deep Learning
  • Melanoma
  • Skin Neoplasms

Identity

PubMed Central ID

  • PMC7702097

Scopus Document Identifier

  • 85096948055

Digital Object Identifier (DOI)

  • 10.1111/j.1365-2559.2009.03450.x

PubMed ID

  • 33247560

Additional Document Info

volume

  • 25

issue

  • 11