Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. Academic Article uri icon

Overview

abstract

  • Molecular dynamics simulations are employed to determine the errors introduced by anharmonicity and anisotropy in the structure and temperature factors obtained for proteins by refinement of X-ray diffraction data. Simulations (25 ps and 300 ps) of metmyoglobin are used to generate time-averaged diffraction data at 1.5 A resolution. The crystallographic restrained-parameter least-squares refinement program PROLSQ is used to refine models against these simulated data. The resulting atomic positions and isotropic temperature factors are compared with the average structure and fluctuations calculated directly from the simulations. It is found that significant errors in the atomic positions and fluctuations are introduced by the refinement, and that the errors increase with the magnitude of the atomic fluctuations. Of particular interest is the fact that the refinement generally underestimates the atomic motions. Moreover, while the actual fluctuations go up to a mean-square value of about 5 A2, the X-ray results never go above approximately 2 A2. This systematic deviation in the motional parameters appears to be due to the use of a single-site isotropic model for the atomic fluctuations. Many atoms have multiple peaks in their probability distribution functions. For some atoms, the multiple peaks are seen in difference electron density maps and it is possible to include these in the refinement as disordered residues. However, for most atoms the refinement fits only one peak and neglects the rest, leading to the observed errors in position and temperature factor. The use of strict stereochemical restraints is inconsistent with the average dynamical structure; nevertheless, refinement with tight restraints results in structures that are comparable to those obtained with loose restraints and better than those obtained with no restraints. The results support the use of tight stereochemical restraints, but indicate that restraints on the variation of temperature factors are too restrictive.

publication date

  • July 20, 1986

Research

keywords

  • Hemeproteins
  • Metmyoglobin

Identity

Scopus Document Identifier

  • 0023053635

Digital Object Identifier (DOI)

  • 10.1016/0022-2836(86)90295-0

PubMed ID

  • 3795269

Additional Document Info

volume

  • 190

issue

  • 2