abstract
- Magnetic stimulation of the motor cortex gives rise to a motor evoked potential (MEP) followed by a silent period (SP) during which a late excitatory potential (LEP) may occur in the surface EMG. To elucidate the mechanism of the LEP we investigated the effect of muscle contraction, stimulus intensity and stimulation site on the LEP recorded from the abductor pollicis brevis muscle. The amplitude of the LEP increased with increasing levels of muscle contraction and decreased with increasing stimulus intensity. There was no direct relationship between the amplitude of the LEP and the MEP, but there was an inverse relationship between LEP amplitude and SP duration. The latency of the LEP was unaffected by the level of muscle contraction, but increased with increasing stimulus intensity. Topographic mapping with stimulation at multiple scalp sites yielded a LEP at sites partially encircling but not including the centre of the APB motor area. These results are consistent with the LEP being due to reflex alpha motoneurone firing as a result of gamma motoneurone activation or with a period of disinhibition at cortical level allowing breakthrough of voluntary activity.