Brefeldin A causes structural and functional alterations of the trans-Golgi network of MDCK cells. Academic Article uri icon

Overview

abstract

  • The trans-Golgi network (TGN) of MDCK cells is exquisitely sensitive to the fungal metabolite brefeldin A (BFA), in contrast to the refractory Golgi stack of these cells. At a concentration of 1 microgram/ml, BFA promoted extensive tubulation of the TGN while the medical Golgi marker alpha-mannosidase II was not affected. Tubules emerging minutes after addition of the drug contained both the apical marker influenza hemagglutinin (HA), previously accumulated at 20 degrees C, and the fusion protein interleukin receptor/TGN38 (TGG), a TGN marker that recycles basolaterally, indicating that, in contrast to TGN vesicles, TGN-derived tubules cannot sort apical and basolateral proteins. After 60 minutes treatment with BFA, HA and TGG tubules formed extensive networks widely spread throughout the cell, different from the focused centrosomal localization previously described in non-polarized cells. The TGG network partially codistributed with an early endosomal tubular network loaded with transferrin, suggesting that the TGG and endosomal networks had fused or that TGG had entered the endosomal network via surface recycling and endocytosis. The extensive structural alterations of the TGN were accompanied by functional disruptions, such as the extensive mis-sorting of influenza HA, and by the release of the TGN marker gamma-adaptin. Our results suggest the involvement of BFA-sensitive adaptor proteins in TGN-->surface transport.

publication date

  • April 1, 1994

Research

keywords

  • Cyclopentanes
  • Golgi Apparatus

Identity

Scopus Document Identifier

  • 0028301797

Digital Object Identifier (DOI)

  • 10.1242/jcs.107.4.933

PubMed ID

  • 8056847

Additional Document Info

volume

  • 107 ( Pt 4)