IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer. Academic Article uri icon

Overview

abstract

  • The effect of the IgG from amyotrophic lateral sclerosis (ALS) patients was tested on the voltage-dependent barium currents (IBa) in mammalian dissociated Purkinje cells and in isolated P-type calcium channels in lipid bilayers. Whole cell clamp of Purkinje cells demonstrates that ALS IgG increases the amplitude of IBa without modifying their voltage kinetics. This increased IBa could be blocked by a purified nonpeptide toxin from Agelenopsis aperta venom (purified funnel-web spider toxin) or by a synthetic polyamine analog (synthetic funnel-web spider toxin) and by a peptide toxin from the same spider venom, omega-Aga-IVA. Similar results were obtained on single-channel recordings from purified P channel protein. The addition of ALS IgG increased single-channel IBa open time without affecting slope conductance. The results described above were not seen with normal human IgG nor with boiled ALS IgG. It is concluded that ALS IgG enhances inward current through P-type calcium channels. Since P-type Ca2+ channels are present in motoneuron axon terminals, we propose that the enhanced calcium current triggered by ALS IgG may contribute to neuronal damage in ALS.

publication date

  • December 15, 1993

Research

keywords

  • Amyotrophic Lateral Sclerosis
  • Calcium Channels
  • Cerebellar Cortex
  • Immunoglobulin G
  • Neurotoxins
  • Purkinje Cells

Identity

PubMed Central ID

  • PMC48060

Scopus Document Identifier

  • 0027144125

Digital Object Identifier (DOI)

  • 10.1073/pnas.90.24.11743

PubMed ID

  • 8265620

Additional Document Info

volume

  • 90

issue

  • 24