A novel chloride channel localizes to Caenorhabditis elegans spermatids and chloride channel blockers induce spermatid differentiation. Academic Article uri icon

Overview

abstract

  • Caenorhabditis elegans spermatogenesis is especially suited for studies of nonrandom cytoplasmic segregation during cellular differentiation. Spermatocytes separate from an anuclear cytoplasmic core and undergo two sequential divisions. During the second division, intracellular organelles segregate specifically to spermatids as they bud from an anuclear residual body. We have applied patch-clamp techniques in order to investigate membrane protein distribution during these asymmetric divisions. We show that membrane components, as assayed by voltage-dependent ion channel activity, follow a specific distribution pattern during sperm development. Several voltage-sensitive ion channel activities are observed in spermatocytes and residual bodies, but only a single-channel type can be detected in spermatids, indicating that other channel activities are excluded from or inactivated within these cells as they form. The channel that is observed in spermatids is an inward-rectifying chloride channel (Clir), as indicated by its sensitivity to chloride channel inhibitors and Cl-dependent shifts in its conductance. Treatment of spermatids with Cl channel blockers induce their differentiation into spermatozoa, suggesting that Clir plays a role during this developmental step. These studies are the first application of patch-clamp electrophysiology to C. elegans development.

publication date

  • May 25, 1996

Research

keywords

  • Caenorhabditis elegans
  • Chloride Channels
  • Spermatids
  • Spermatogenesis

Identity

Scopus Document Identifier

  • 0029924880

Digital Object Identifier (DOI)

  • 10.1006/dbio.1996.9999

PubMed ID

  • 8654886

Additional Document Info

volume

  • 176

issue

  • 1