Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance.
Academic Article
Overview
abstract
The key protein subunit of the telomerase complex, known as TERT, possesses a reverse transcriptase (RT)-like domain that is conserved in enzymes encoded by retroviruses and retroelements. Structural and functional analysis of HIV-1 RT suggests that RT processivity is governed, in part, by the conserved motif C, motif E, and a C-terminal domain. Mutations in analogous regions of the yeast TERT were found to have anticipated effects on telomerase processivity in vitro, suggesting a great deal of mechanistic and structural similarity between TERT and retroviral RTs, and a similarity that goes beyond the homologous domain. A close correlation was uncovered between telomerase processivity and telomere length in vivo, suggesting that enzyme processivity is a limiting factor for telomere maintenance.