Crystal structure at 1.8 A resolution of CDP-D-glucose 4,6-dehydratase from Yersinia pseudotuberculosis.
Academic Article
Overview
abstract
CDP-D-glucose 4,6-dehydratase catalyzes the conversion of CDP-D-glucose to CDP-4-keto-6-deoxyglucose in an NAD(+)-dependent manner. The product of this conversion is a building block for a variety of primary antigenic determinants in bacteria, possibly implicated directly in reactive arthritis. Here, we describe the solution of the high-resolution crystal structure of CDP-D-glucose 4,6-dehydratase from Yersinia pseudotuberculosis in the resting state. This structure represents the first CDP nucleotide utilizing dehydratase of the short-chain dehydrogenase/reductase (SDR) family to be determined, as well as the first tetrameric structure of the subfamily of SDR enzymes in which NAD(+) undergoes a full reaction cycle. On the basis of a comparison of this structure with structures of homologous enzymes, a chemical mechanism is proposed in which Tyr157 acts as the catalytic base, initiating hydride transfer by abstraction of the proton from the sugar 4'-hydroxyl. Concomitant with the removal of the proton from the 4'-hydroxyl oxygen, the sugar 4'-hydride is transferred to the B face of the NAD(+) cofactor, forming the reduced cofactor and a CDP-4-keto-d-glucose intermediate. A conserved Lys161 most likely acts to position the NAD(+) cofactor so that hydride transfer is favorable and/or to reduce the pK(a) of Tyr157. Following substrate oxidation, we propose that Lys134, acting as a base, would abstract the 5'-hydrogen of CDP-4-keto-D-glucose, priming the intermediate for the spontaneous loss of water. Finally, the resulting Delta(5,6)-glucoseen intermediate would be reduced suprafacially by the cofactor, and reprotonation at C-5' is likely mediated by Lys134.