abstract
- High spatial and time resolution single-molecule fluorescence resonance energy transfer measurements have been used to probe the structural and kinetic parameters of transfer RNA (tRNA) movements within the aminoacyl (A) and peptidyl (P) sites of the ribosome. Our investigation of tRNA motions, quantified on wild-type, mutant, and L1-depleted ribosome complexes, reveals a dynamic exchange between three metastable tRNA configurations, one of which is a previously unidentified hybrid state in which only deacylated-tRNA adopts its hybrid (P/E) configuration. This new dynamic information suggests a framework in which the formation of intermediate states in the translocation process is achieved through global conformational rearrangements of the ribosome particle.