Regulation of store-operated Ca2+ entry during the cell cycle.
Academic Article
Overview
abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.