Production of glycosylated physiologically "normal" human alpha 1-antitrypsin by mouse fibroblasts modified by insertion of a human alpha 1-antitrypsin cDNA using a retroviral vector.
Academic Article
Overview
abstract
Alpha 1-Antitrypsin (alpha 1AT) deficiency is a hereditary disorder characterized by reduced serum levels of alpha 1AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment alpha 1AT levels in this disorder with physiologically normal human alpha 1AT, we have integrated a full-length normal human alpha 1AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the alpha 1AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi 2 and infected NIH 3T3. The clones produced three mRNA transcripts (5.8, 4.8, and 2.4 kilobases) containing human alpha 1AT sequences, secreted an alpha 1AT molecule recognized by an anti-human alpha 1AT antibody, with the same molecular mass (52 kDa) as normal human alpha 1AT and that complexed with and inhibited human neutrophil elastase. The psi 2 produced alpha 1AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal alpha 1AT purified from human plasma and markedly longer than that of nonglycosylated human alpha 1AT cDNA-directed yeast-produced alpha 1AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human alpha 1AT cDNA into non-alpha 1AT-producing cells, resulting in the synthesis and secretion of physiologically "normal" human alpha 1AT.