Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Academic Article uri icon

Overview

abstract

  • Of the ~80 putative toxin-antitoxin (TA) modules encoded by the bacterial pathogen Mycobacterium tuberculosis (Mtb), three contain antitoxins essential for bacterial viability. One of these, Rv0060 (DNA ADP-ribosyl glycohydrolase, DarGMtb ), functions along with its cognate toxin Rv0059 (DNA ADP-ribosyl transferase, DarTMtb ), to mediate reversible DNA ADP-ribosylation (Jankevicius et al., 2016). We demonstrate that DarTMtb -DarGMtb form a functional TA pair and essentiality of darGMtb is dependent on the presence of darTMtb , but simultaneous deletion of both darTMtb -darGMtb does not alter viability of Mtb in vitro or in mice. The antitoxin, DarGMtb , forms a cytosolic complex with DNA-repair proteins that assembles independently of either DarTMtb or interaction with DNA. Depletion of DarGMtb alone is bactericidal, a phenotype that is rescued by expression of an orthologous antitoxin, DarGTaq , from Thermus aquaticus. Partial depletion of DarGMtb triggers a DNA-damage response and sensitizes Mtb to drugs targeting DNA metabolism and respiration. Induction of the DNA-damage response is essential for Mtb to survive partial DarGMtb -depletion and leads to a hypermutable phenotype.

publication date

  • July 28, 2020

Research

keywords

  • Mycobacterium tuberculosis
  • Toxin-Antitoxin Systems

Identity

PubMed Central ID

  • PMC7689832

Scopus Document Identifier

  • 85088596352

Digital Object Identifier (DOI)

  • 10.1186/gb-2008-9-9-r137

PubMed ID

  • 32634279

Additional Document Info

volume

  • 114

issue

  • 4