Forces and energetics of the canonical tetrameric cation channel gating. Academic Article uri icon

Overview

abstract

  • The canonical gating mechanism of tetrameric cation channels involves the spreading of the pore-lining helices at the so-called bundle-crossing gate. Despite a wealth of structural information, we lack a physical description of the gating process. Here, I took advantage of an entropic polymer stretching physical model and MthK structures to derive the forces and energies involved in pore-domain gating. In MthK, the Ca2+-induced conformational change in the RCK domain alone opens the bundle-crossing gate through pulling via unfolded linkers. In the open conformation, the linkers serve as entropic springs between the RCK domain and bundle-crossing gate that store an elastic potential energy of 3.6kBT and exert 9.8 pN (piconewton) radial pulling force to keep the gate open. I further derive that the work to load the linkers to prime the channel for opening is up to 3.8kBT, exerting up to 15.5 pN to pull the bundle-crossing open. Opening of the bundle-crossing leads to a release of 3.3kBT spring potential energy. Thus, the closed/RCK-apo and the open/RCK-Ca2+ conformations are separated by a barrier of several kBT. I discuss how these findings relate to the functional properties of MthK and suggest that given the architectural conservation of the helix-pore-loop-helix pore-domain among all tetrameric cation channels, these physical parameters might be quite general.

publication date

  • July 3, 2023

Research

keywords

  • Protein Structure, Secondary

Identity

PubMed Central ID

  • PMC10334803

Scopus Document Identifier

  • 85014666991

Digital Object Identifier (DOI)

  • 10.1126/science.aah7124

PubMed ID

  • 37399394

Additional Document Info

volume

  • 120

issue

  • 28